If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+22y-5=0
a = 1; b = 22; c = -5;
Δ = b2-4ac
Δ = 222-4·1·(-5)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-6\sqrt{14}}{2*1}=\frac{-22-6\sqrt{14}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+6\sqrt{14}}{2*1}=\frac{-22+6\sqrt{14}}{2} $
| 5x+2*7=19 | | 2(x+11)=3x-22 | | 3(1-3(-11))=2(-4(-11)+7)+x | | 6x^2–12x+3=0 | | 0.125x^2+2.5x-3=0 | | 7+7x=7(x+1/7) | | -15x-19=79 | | -2h=-2-h | | 3x-4+x+1=66 | | (b+4)+17=0 | | 1-10x(-1)/4.5= | | -1/4x-2=-3 | | 28+x/9=245 | | 1x-2/3x-2/3=9 | | 60/66=n22 | | (13x+1)=(9x+3) | | 1/3x=29/3 | | 6x-2x=3x-4 | | 6g=8g-6 | | 56=-y/7 | | A/b=3/4 | | 2n-10=5+1n | | -7(-4v+3)-9v=4(v-7)-5 | | (3n-6)=(2n+6) | | 1+7x+14x2+7x3+x4=0 | | 10(1.375)^12t=70 | | −4x+8=2x+10 | | -6x+(-12)=18 | | 2(5x-5)=10(x-1( | | 7k-(2+k)=-(3k+2) | | x-14(-4)=-32 | | (8v+2)=(v+6) |